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Practical and theoretical considerations in computing first passage time

statistics are considered. We are motivated by first passage times as models of
failure times.
— P

In particular, let X(¢) be a diffusion on [0,r] with a reflecting boundary at 0.
Denote by 7, the time of first passage to level r, ie, 7, =inf {t >0, X(¢t) > r},
and let w(z,t) be its tail probability function conditional on X(0) =0, ie
w(z,t) =P{r, >t | X(0) =2z} = P*{r, > t}.

. In Section 1, the relevance of first passage time distributions as failure time

models is indicatedfef [8]). Also, the spectral series expansion solution to the
backward equation is introduced.

In Section 2, algorithms for approximating w(z,t) are obtained. In
particular, the infinite spectral expansion for w(z,t) is approximated by an n-
term sub-expansion which matches the first n—1 moments. Proofs validating

the spectral expansion and the related approximation scheme are given in the
Appendix.

In Sections 3 and 4, methods are given for obtaining the eigenvalues and
first passage moments, necessary for computing approximations to w(z,t). In

Section 5. computational issues related to calculating the moment generating
function are considered.

Sections 6 and 7 include theoretical complements about first passage times. ‘
In particular, the moment generating function is shown to possess an interesting
representation having exponential form (cf equation (7.1) ). This exponential
representation is related to asymptotic expansions used in analyzing

' \>"= perturbations of certain second-order differential equations.
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1. Introduction And Motivation
i
tf:;
. Let {2, F , P} be a probability space. Suppose that F, is a filtration of F
:f‘} and that {W(t), ¢t > 0} is standard Brownian motion adapted to Fy.
[N
Let
’, A = ig)-Dz + u(z)D (1.1)
be the infinitesimal generator of a diffusion X(¢) on [0, 7] satisfying
5
e dX(t) = o(z)dW(t) + u(z)dt,
oy .
44
3 with a reflecting boundary at 0 and absorption at r < 0o, and where 02(:1:) >0
and u(z) are continuously differentiable on [0, r] .
.
:ﬁ Define the stopping time 7, by
)
¥
!}; T, = inf{s:520, X(s) >r}
Y and the moment generating function Wy(z,y) by
t
)
Rt Yy(z,y) = E{e" | X(0) =2} = E*[¢"]
48
af
2
1.1 First Passage Times As Failure Times
‘!:‘ Our motivation for studying first passage time distributions is their
:!: relevance to modeling of failure times. Indeed, this paper continues the line of
::3 development initiated in [8], where a stochastic process is used to model system
o state, ie, wear-and-tear, and failure occurs when either a traumatic killing event LA
' occurs (killing events happen with rate k(r) in state z), or the system is retired
W when wear-and-tear reaches some predefined threshold (ie, a first passage
:: occurs).
)
P For example, if system state is modeled as Brownian motion with positive
f: drift, then first passage to a specified threshhold has an inverse Gaussian
distribution. This first passage distribution has been successfully applied to
7 numerous problems to obtain good fits, (cf Jorgensen [4] ).
A related but parallel line of development is explored in Wenocur [11] , |
where the killing time distribution of Brownian motion with quadratic killing ‘
B rate is calculated. jT—
g Our aim in this paper is to study first passage time distributions, where the ,;y Codes
W system state process is a general diffusion with reflection at the origin and ... ____
N absorption at r < oco. That is, the system state evolves as a diffusion, and ‘' 3:d/or

opecial

,,' 4l
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failure occurs at the epoch of first passage (or absorption) to level r .

%4:3 In future work, we intend to explore the practical ramifications of employing
Yy the computational methods suggested here to evaluate interesting first passage
R times statistics.

1.2 Backward Equation For First Passage Time Distribution

; _
oy . o . . . .

»“' Let w(z,t) denote the tail of the first passage time distribution, ie,

w(z,t) = P*{r, > t}.

&

)

E;, The backward differential equation for w(z,t) is

e “

O’i

X dw(z,t) o(z) &

" w(z _ u(x)aw(z,tl + (z) O°w(z,t) — Aw(z,t) (1.2)

ot oz 2 dz?

W
%:; for (z,t) € (0,r) X (0,00) , with boundary conditions
) .
i‘ },
N .

4k w(z,0) =1for0<z <r, and for all t>0 w(r,t)=0 and Mwagil =0.
# 4
é,v For a derivation of this equation and other related quantities see [5], pp 222-
e 224,
*325'
i 1.3 The Spectral Representation for w(x,t)
‘ The following representation for w(z,t) is valid whenever o°(z) and u(z) are
e sufficiently smooth.
o
:;!g x —ayt
w(z.t) = 5 o e 6y(2) (13)
v P

.
e where a; and ¢, are eigenvalues and eigenfunctions, and ¢, are generalized
:‘: Fourier coefficients, all defined below (This representation is proved in Section
it 8.1).
e )

Uy . .

Y The { &, , k > 1} are eigenfunctions of 4 corresponding to the eigenvalues
o e {akvkzl}?iev

B Y
P Ao = =49, ,
kLY

*"; and
. r
ol ok = [ &(z)p(c)dz ,
K 0
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where p(z) is given by

p(z) = 2n(z)/o(z) (1.4)
and m(z) is given by

m(z) = exp_Z' 2u(u)/o*(u)du . (1.5)

In general an arbitrary function f €L2(p) will have a Fourtier type
expansion, ie,

[ = §Ck¢k

k=1

where equality is interpreted in the L%(p) sense and
¢ = ff(.'b' ¢I¢ p(a:)dx

Remark: In the sequel it is assumed that A’s eigenvalues form a complete set in

2(,0) The completeness of A’s eigenfunctions can be assured by certain
regularity conditions on the infinitesimal parameters o*(z) and w(z) . For
example, o(z) >0 and the continuity of o(z) and wu'(z) are sufficient
conditions. See {10, chap 1] for more details.

1.4 A Generalization

This paper is primarily concerned with computing first passage time
statistics. In (8], as alluded to in (1.1), a general reliability model was proposed
in which system failures occur when either system wear-and-tear reaches some
maximum permissible level (ie, a first passage occurs) , or when some killing
event happens (such killing events occur with rate k(z) in state r). Under this
model w(z.t) satisfies the following equation:

Jw(z.t)

ot = k(z)w(z, t)ll(l‘) Jw(z, t) z) 32!0(17,!)

o(
oz 2 (9.2‘2

with the same boundary conditions as (1.2) , and where

Bf (z) = 2%()/"(z) + u(a)f () + k(2) ()

= Bw(z,t) ,

It is possible to solve for w(z,t) and related quantities with methods very
similar to those presented here.

-3-
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2. Approximating The First Passage Time Distribution

The above discussion might suggest that solving for w(z,t) is pretty
straightforward. But generally eigenvalues and especially eigenfunctions are
difficult to obtain. However the problem of approximating w(z,t) can be
approached by the method of moments. One technique is to calculate the first
three moments, and then use the Pearson curve fitting method (cf [9]). This
method is computationally feasible, and the Pearson family of curves includes
some important first passage distributions, such as the gamma distribution (cf
[1]). The merits of this approach will be studied in a forthcoming paper.

2.1 Given n Eigenvalues And n—1 First Passage Moments

A more computationally intensive approach, but one founded on stronger
theoretical grounds, is the following. Suppose that n moments
{My(z,r), 1<k <n} are known, where M;(z,r) = E*[7¥], as well as the
first n eigenvalues {a; , 1 <k <n } . Then use a finite sum in place of the
infinite sum in equation (1.3). In particular, approximate w(z,t) by

wa(z,t) = 33 pf(z) e~t/™

Jj=1
where pi¥ = (p{, ..., p ) satisfies for 0 < k < n-—1
n . .-\/Ik(x,r)
j?l Pj( (z) (ﬂj)k = ‘T— where By = 1/aj (2.1)

Ideally we want w,(z,t) to be a distribution function, ie, w,(z.,t) >0 and
wy (z,5+t) 2 wy(z,t) whenever s > 0. It is not clear that solving (2.1) always
produces such a function. This issue requires further investigation.

2.1.1 Obtaining The Weighting Factors

The weighting factors {p”,1 <% < n } in (2.1) above are obtained by
solving the following linear system:

O W1 [
o S I p{’ m,
& 92
Hi S I 9 ps’ mo
o = (2.2)
.(")
p
-1 - . - n
pt™t oppt ui! - [ Mn -1

where pi; = 1/a; and m; = M(z,r)/k!
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Observe that the matrix {uf,1<j <n, 0<j < n}is none other than the

transpose of the celebrated Vandermonde matrix. Cramer’s equation gives the
following formula for p® .

= h) Mign—j(Bube " Hemt s Best " Ha) / I1 (V‘j — ) (2.3)
1S <n LSigE"

where g, are the signed symmetric functions defined as follows:

90(01,02, toe 7am) =1

and for r 21

gr(ayag - ,0p) = Z a;8i," " - ai,(_l)r
1€<ih< - <5, E<m

It is shown in Section (8.2) that p{® — p, = O(n™?).
2.2 Given 2n—1 Moments Only

Suppose that the first 2n~1 moments have been determined. It is possible to

approximately determine the first n eigenvalues by solving the following system
of equations for u; , 1 <1 < n.

r 8
1 1 o 1 [ ] 1
Hq Ho L Hn Pl(') m,
Hi Ha Fn P2 Mo
('-)
[ T . Dy I — pﬂ
an 1 ﬂ‘,:;!n 1 e /»‘;:n 1 ! J _m‘.?n—lj
b J

where mp >0.

One approach is to solve for p' in terms of {u,,1<k <n} and
{mo.my. -+ .m,_;} as detailed above, and then use the remaining n
constraints to determine the {y#;, ,1 < k < n}. This reduced system can then be
solved using mathematical programming techniques, eg, approximate Newton-

Raphson techniques. The numerical stability and feasibility of this method
merit further study.
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3. Solving For The Eigenvalues

“i’:,' 3.1 The Eigenvalue Equation
:‘f Before the eigenvalue equation can be introduced, the eigenfunction
ff%_‘ differential equation must be rewritten in more suitable form. To do so, let

Yy(z) satisfy

Lo2e)¥y"a) + ue) Y/(2) + 0Y4(z) = 0 (3.1)

» &

Multiplying (3.1) by p(z) gives

‘q m(2)Y"(z) + 7(2) Y{(z) + 6p(z) Yo(2) (3.2)
% where p(z) and m(z) are given by (1.4) and (1.5) respectively.

Now suppose that Y, satisfies the boundary conditions

:3‘ Y4(0) =0 and Y,(0) =1
)
)
;E'o Then define w(f) by
R
w(f) = Yy(r) (3.3)
]
‘,:. The eigenvalues of equation (3.1) are none other than the zeroes of w , see [2,
Ao Chap 8] for further details.
"
, 3.2 Standardized Eigenvalue Problem
r:a It is also possible to transform (3.1) into more standard form using the
,::: following transformation scheme.
b
X -
l setting z = Z(z) = —T-u_(, reduces (3.1) to
e L @
W 2
i -y dY
3 i + :3(::)—(1,: +0Y =0 (3.4)
g
e where 3(z) = {u(z)=—0™(z)}/(o*(z)/2) "
i
3 _ [ —53u)du
3 Putting Y(z) = g(2)y(z) , where g(z) = ¢° gives
3 d?
Ch d—sz +(0—q(2))y =0 (3.5)
)

RGN L PP R PR Y R AR A RIR PR CCER RO RIS - ) A S RS YO8 AN A AT AT AT
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where ¢(z) = i—ﬂz(z) + ;1-/3'(2), and with boundary conditions y'(0) =0 and
y(b) =0 with b = Z(r).

The eigenvalues of (3.5) are the same eigenvalues as those of (3.4) and (3.2)
Moreover the eigenfunctions of (3.5) are easily transformed into those of (3.2) .
In particular if 1,(z) is the eigenvalue corresponding to a, for (3.5) , then

¢a(z) = 9(Z(2))¥n(Z(2))-

The following powerful asymptotic results (as n — oo ) are known about the
eigenvalues and eigenfunctions of the standardized problem (cf [10, p. 19]).

a, = nm?/b% + 0(1) (3.6)
bo(z) = (2/6)2cos(nmz [b) + 0(%) | (3.7)

Y, (z) = =n(2/63)2sin(n7z /b) + 0(1) (3.8)

Jw v e

-
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4. Obtaining First Passage Moments

To solve (2.1) we need to produce the moment-sequence
{M;(z,r) , 1 < k < n}, three such methods are outlined below.

4.1 Complex Integration To Invert Moment Generating Function

Corollary 6.4 shows that Wy(z,r) is an analytic function of # around 0, and
so Cauchy’s formula implies the identity

M, (z, Wy(z,
My (z,r) 1 olz.r) 1 (4.1)
n! 271 6] = 8o gn+!

where 0 is sufficiently small.

The integrals in (4.1) may be computed numerically using Gaussian quadrature
to minimize the number of values of § to be evaluated, and then taking the real
part. This reduces evaluating the equation to calculating a small number of
values of Wy(z,r) . Evaluating Wy(z,r) may be done by either using finite
differences to solve the boundary value problem (cf equation (7.6)), or by using
the series method suggested in the differentiation approach, or some hybrid of
series and finite differences. An important virtue of estimates of M, (z,r) based
on formula (4.1) is that the accuracy of these estimates is independent of the

i accuracy of the n—1 smaller moments. unlike the methods given in sections
e (4.2) and (4.3) below.
& +
o 4.2 Recursive Integration
i This approach iteratively uses (6.1) to compute successive moments. This is
o feasible when the successive moments form a closed family of intezrals compare
o y g P
' example 1), or when only a few moments are desired.
'
1’4’
o Example 1
W .
:‘.‘: Choosing parameters 0%(z) = 2(z + o) and i(r) = v where v #0
D
o
0::: gives rise to the iteration:
‘J' .

r w
— n -
‘:. M,,(x) = f ———u f x\[n_l(u)(u + Cfo)u ldudw
) : (w + ) o
g
) An easy induction will show that for v not integer M, _,(z) satisfies the
o expansion
) . k z ~ k
:::. M,_(z)=c[n,0] + ¥ c[n,kl(z+a)* + Y dnkj(z4a)"
-
I

-9-
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where the coefficients are calculated using the iteration:
c[n,k] = —nc[n—1,k—1]/(k(k—1)+vk) where k 21
d[n,k] = —nd [n~1,k—1])/((—v+k)(—v+k—1)+A—v+k)) where k > 2

Finally c[n ,0] and d[n,1] are determined by solving the two-dimensional linear
system arising from the boundary conditions M, (r} = 0 and M,(0) =0.

For integer v , closed formulas for all moments are obtainable, but the
calculations will be messier.

4.3 Differentiating the Moment Generating Function

Successive moments may be obtained by calculating the f-derivatives of the
moment generating function Wy(z,r) at § =0. This approach is facilitated by
Kent'’s observation in [7] that Wy(z,r) = Ty(z)/Ts(r) where Ty(z) satisfies

L9 |

A(z)T¢"(z) + w(z)Ty(z) + 6Ty(z) =0 (4.2)
with initial conditions

T/0) =0, Ty0)#0 (4.3)
To solve for the 6-derivatives of Wy(z.r) it suffices to solve for the derivatives
of Ty(z). We can obtain Ty(z) using the series expansion method around =0 to

solve (4.2) . Under certain regularity conditions. the Taylor series coefficients

may be differentiated with respect to ¢ , and the series summed. This process is
illustrated in Example 2 below.

Example 2

We indicate how the technique in (4.3) may be applied to Example 1:

Equation (4.2) implies that

#e) 8 T2, 0)2 + ) 3 (G41)by(6)e) + 6 5 5,07 =
J= =0 J=0

Since u(z) = v and o(z) = 2(z+0y) we deduce that

0b;(6) + (v+7(74+1))bj41(0) + 0o(J +2)(J +1)bj42(0) = 0 for j 21 (4.4)

-10-
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where the boundary conditions are

Repeatedly differentiating (4.4) will give successive iterative formulas for
computing T§*)(z) . For example for n=1

06;(6) + b;(6) + (v + 7(7+1))b;41'(6) + 9o(s +2)(5 +1)b;45'(6)

With initial conditions b4/(6) = 5,/(6) =0 .

If the above iteration diverges, we can always try renormalizing by z and
calculating b*(f)z". If r is sufficiently small then renormalization will suffice,
otherwise Ty(z) can be calcuiated by successively moving out from O towards r

as suggested in section (5.1) below, and then using the contour integration
method suggested in section (4.1).

e o g = gk o 3

S an e n o o o

WSS TSR e
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5. Some Remarks About Computing Vy(z,r)

5.1 Computing Wy(0,r)

The series expansion method may not permit solving for Wy(0,r) in a single
step. However, suppose the series converges for some y € (0,r) , ie, it is possible
to compute Wy(0,y) by the series method. We may use Wy(0,y) as a bootstrap
to calculate Wy(y,r) as follows. Observe that Wy(0,r) = ¥y(0,y)W(y,r) . Thus

Vy(0,y) OVy(y,r)
OWy(0,y) Oy
Jy

\I’O(yvr) = =

Using this initial condition and Kent’s normalization technique, it is possible to
calculate Wy(y,r) starting from y rather than from 0.

5.2 Interpolating ¥y(z,r) And A Related Boundary Value Problem

Suppose that Wy(z,r) and W¥y(y,r) have been obtained (r < y), and it is
desired to calculate Wy(z,r) for z € (z,y) . The multiplicative character of

Wy(z,r) implies that
Wo(z.r) = Wy(z,y)¥y(y,r)

It thus suffices to determine Wy(z,y) . We have Wy(z.y) = Wy(z,r)/Wy(y.r) and
Wy(y,y) = 1. Therefore it suffices to find hy(z) ( = Uy(z,y)) such that

I\')lr-t

*(2)hg"(z) + (2)hg(2) + Ohg(z) =0 (5.1)

with boundary conditions hy(z) = W,(z,r)/Wy(y,r) and hg(y) =1 . These
boundary conditions uniquely determine 44 . To solve for hg . first find & and &,
satisfying (5.1) . where &,/(z) = 1—{ and E,( )=1,for i =0.1. Then set

ho(=) = Wo(x.y)E1(2) + Eo(= N1 = Wy(z,5)E1(¥))/Eo(¥)

‘ Tt ORORGUC (OO ik A6 L0, O ) Rss DL
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6. Theoretical Complements

In this section some of the properties of moments of 7, are examined, but
first some new notation is introduced.

Define M,(z,y) = E*(r)) forz <y and n 20, and let

oM, (z,y)
oz

M, (z,y)
9z

lwn '(x,y) =
M, (z,y) =

6.1 Recursive Equations For Moments Of 7,

The functions M,,(@y) jointly satisfy the iterative differential equation (cf
[5], p. 203, equation (3.38) ).

1 >
-2—0"(:1:)M,,”(:r,y) + u(z)M,'(z,y) + nM, _i(z,y) = O (6.1)
subject to M,'(0,y) =0 and M,(y,y) =0.

6.2 Lipschitz Conditions For Moments Of 7,

Lemma
M, (z,y) is a smooth function in z and y jointly , and there exists a constant
C such that
M, (z.9)l < C"y* Yy —z)n! (6.2)
and
M, ()] < ¢myPr=Vnt
forallz <vy.

Proof:

Set,

S 7 (3]
) = exp{ _!;02(6) d€}
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and

m(z) = 1/[c*(z)s(z)] -

Rewriting (6.1) as follows

d [Mn'(x,y) ]
dz s(z)

implies that

= —QHIMn_l(x!y)m (z)

M,(z,y) = 2n} [ZMn-l(&y)m (§)d€]s(n)dn

By virtue of continuity there exists a constant K such that
= <

il = | su k@ISK

and

im |l < K .

Therefore

yn
M, (z.9)| < 2nf [ K2||M,_,|ld€dn
z 0

= 2n K*||M, ylly(y—2) < 2K°%y*n ||M, ||

An easy induction implies that M,(z,y) is a smooth function in r and y .
moreover

M (2 0)l] < 2" K" 2"~ (y —2)n! (6.3)
and

M, (z,9)]] < 2" K27 y*=Nn!

Taking C = (2K?) completes the proof.

(6.4) Corollary

Vy(z,y) < oo whenever || < C~1y~2, and

% M,(z,y) (6.4)

\pl(zvy) - §

n=0




L

6.3 Infinitesimal Relations Governing First Passage Moments

Proposition

Define
; OM,(z,y)
: U,,(:r,y) = ay
: and
| up(z) = Up(z,2)
: Then M, (z,y) , Up(,9) , (<) satisfy

2 | n

M,(0,y) = ¥ 3 j(o'z)Mn—j(xv?/) (6.5)
‘ J=0
)
R
‘ n—1 n
‘ Up02) =S |7 [M0.2)u0-5(2) (6.6)

j=0
: j
(] Proof
: Conditional on X(0) =0 the strong Markov property (SMP) implies that
H {Ta, s Tay=Ta, s .sTy = T4 }, Where 0< 6, <a;< -~ <4q,<r, form a set of
’ independent random variables. In particular
M,(0,y) = E°%] = E%(r, + 1, — 7,)"]
g Y |n|gor - \s n—j
,, = 5 MY (=m) ]
j=0
n . .
= 2 '; Eo[ Tz)] ] Er[(ry—'-z)n_J ]
A J=0 ]
- which coincides with (6.5) . Using a little algebraic manipulation on (6.5) shows i
i that !
: n—-1
" [M,(0,y)—-M, (0’3)]/(3/—1') =3 [?]Mj(ovx)Mn—-j(I'y)/(y_x) (6.7)
Jj=0

Now letting y—»z in (6.7) yields (6.8) . QED

-15-
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Comments
Equations (6.5) and (6.6) provide sor nice intuition about the way that first
passage times from z to y depend on fi. passage times from O to z.

Equations (6.5) and (6.8) are similar to (6.1) , but may capture better the
dependence of higher moments on lower moments. From a practical point of
view equation (6.1) is certainly preferable for moment calculation. In section 4,
other methods are proposed for calculating the moments M, (z,y) .




7. A Representation Result

Theorem
oo ¥ o
Vy(z,y) =exp{ T [ ua(z) Sydz} (7.1)
n=l z :

where {u,(z), n> 1} satisfy
FoH@)u(@) + ua)u(e) =1, (7.2)

and for n > 2

27 ) + (@) = TAE) S —",(7()—_‘7*)(,-)— (1.3)

Proof
We begin by showing that (7.1) holds for ¥y(0,r) .

Let z; = jr /L for 0 < j < L. Using the SMP as in the proof of (6.5),

L-1
\I’d(ovr) - H ‘I’d(zjvfj+l)

J=0

Taking logarithms.

L-1
log\I/g(O,r) = 2 log\pﬁ(zjyxj+l)
J=0

Applying proposition (8.4) to the above yields
L-1 -
logWy(0,r) = Zo [(Wo(;,2541) = 1 + (Wo(z,2741)=1)° g (Yy(zj,7,41))] -
J-
Since Wy(z,z) = 1 it follows
v, _ _
\I’a(.l‘j,.tj_'.l) —-1= 8—y(:tj,l‘j + alL l) L1

where 0 < a < (%W'( Also since Wy(z,y) is a smooth function in z and y jointly ,
it follows that —:;—y) is uniformly bounded on the region 0 <z <y <r. So

y
there exists a function k(L) such that A(L)~O(1)

L-1
logWs(0,r) = 3 [Wy(zj,2j41)—1] + A(L)L7T.
=0

-~ ix)k‘h;,'i(‘-.ta""fn y?l‘;:lh‘:tk



Replacing each \Il,(.'.:j,xj_,,,) in the above by the expression in (6.4), yields

L-1 o "M, (z;,z;
log‘l’,(O,r)== 2 4 u( ] J+l)

Jj=0 nm]

~ + O(L™Y)

Since the summands are positive the order of summation may be permuted to

get
o L-1 *M, 'x-,z-
log¥(0,r) = ¥ & n(‘: 1) + O(L™Y
n=1 j=0 n:
i The inner summation can be expressed as a Riemann sum
K
o0 L-1 M, (z;,z; ' : ‘
log¥y(0,r) = 3 6* % —(i—_lL‘) + + o™y (7.4)
' n=l j=0 nlL L
o Equation (6.2) implies that
(X
»l
!“': M (z'yxl' 1)
4 nngJL—l+ S CMzj)" S Co "

where C = Cr? .

The Lebesgue dominated convergence theorem (applied to the product space
b {1,2,..} X [0,r] endowed with product of the counting measure with the
Lebesgue measure on [0,r]) implies the right side of (7.4) approaches the limit

i

log¥y(0,r) = 3 = [ u,(2)dz
‘0

nem]
as L — oo, or
o gn T
; U0r) =exp{ S == [ u,(z) ds}
K nel 0
1]
L

Due to the multiplicative nature of Wy(z,y) it is easy to show that

=]
ot
-

o ¥ n
: Wy(z,y) = exp{ 3 [ u,(z) i—!dz} (

o A=l r
The function Wy(z,y) satisfies the following differential equation (cf (5] pp 203 )

F¥y(z,y) + u(z) OV¥y(z,y)
9z? # Oz

%02(1:) +6¥yz,y) = 0 (7.6)
-18-
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3‘1’, 0 Yy
. subject to # =0 and WYy(y,y)=1.
B Oz
N
K Substituting equation (7.5) in (7.6) , shows that the exponent in (7.5) satisfies
% the differential equation
. 1 A x 6 o g"
ZAE(E FuE)f - B Sule)] - wa)E Tuy(z) 46 = 0.
2 a1 ! net P! oy B!
Since the above series converge absolutely for 6 sufficiently small, we can
rearrange terms to obtain a single power series in § . Since this power series is
zero for @ sufficiently small, all its coefficients must be zero. Setting the
x" coefficients of § to zero yields equations (7.2) and (7.3) .
B e e 3V (0, . .
! The initial condition that —'(zL) =0 in (7.6) implies
K
} u,(0) =0, where n >1.
5
»
"
Y
&
)
)
y
K
.3(
)
E
X
at
‘7‘
3
)
i
’.‘
K
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8. Appendix

8.1 Spectral Representations For First Passage Time Distributions

Theorem The right-hand-side of (1.3) is the unique function satisfying (1.2),
wiz,t

5t absolutely

jointly continuous in z and t on [0,r] X (0,00) with
integrable over [0,r] X (N™!, N) forall N > 1.

Proof: :

Suppose that w(x,t) satisfies equation (1.2) and the integrability conditions.
Observe that for fixed ¢ >0 w(z,t) is a continuous function of z belonging to
L*(p) . Therefore w(z,t) possesses the orthogonal expansion

w(z,t) = 3 cxlt) d(2)

k=1

where

: u(t) = [ w(zt) dy(a)p(a)ds

0

Multiply (1.2) by ¢x(z) and integrate over [0,r] to get

f M o (2)p(z)dz =f Aw(z,t)d(z)p(z)dx

Now since Af(z)p(z) = n(z)f"(z) + (2)/"(z) (cf (3.1) and (3.2)), a simple
i integration by parts shows

r r

[ Aw(z,t)d(x)o(z)dz = [ w(z,t)A é(x)p(z)dz
0 0

The relationship A @;(z) = —a; & (z) implies that

f GELLL) 4, (2)o(z)dz = — [opu(s.t)6,(2)o(2)dz

# 0 *

Integrating both sides with respect to t over [#0,4] and permuting the order of |
, integration on the left-hand-side yields (permissible because Fubini’s Theorem

' Mmmpu»

, applies to the absolutely integrand

[1 G 4, (2 )o(a) dt do = [ [ ~apw(z.t)bu()o(z) dz de

0 ug ug 0
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Using the definition of c(t) on the right-hand-side of the last equation implies

c(u)+ C = _7' ci(t)dt

o

where C is an arbitrary constant.
Therefore ¢;(t) = ¢, e~*! It remains to determine the constants c; , but they
may be derived from the ‘boundary condition w(z,0) =1 for 0 <z < r as
follows. Since p is continuous, w(z,0) =1 for almost all p(dz), and 1 € L*(p).
So

1= 5 (z) (8.1)
k=1 ‘ _ -

where

o = J Sela)ola)dz 82)
0

Now Theorem 1.9 of [10] implies that the right-hand-side of (8.1) converges
pointwise to 1 on (0,r) . Therefore w(z,t) has the representation

w(zt) = % e < oi(a) (8.3)
=]

To prove the converse, suppose that w(z,t) is defined by (8.2) and (8.3) jointly.
Equations (3.7) and (8.2) imply that the coeficients ¢; , k>1 are uniformly
bounded. Hence for ¢t > ¢ >0 the series converges uniformly to a function
continuous on the product [0,r] X [e,00) . The uniform convergence and
boundary conditions on the eigenfunctions imply the boundary conditions on

The integrability conditions on Qi%:;—’t-)- follow in similar fashion. The

boundary condition w(z.0) =1 for z € (0.r) follows from Theorem 1.9 of [10]
and equaticn (8.1) The differential equation (1.2) may be derived from the
definition of derivatives as limits of divided differences, and the dominated
convergence theorem applied to series. QED.

It should be noted that the first passage time distribution satisfies the regularity
conditions of the theorem, and therefore must have representation (1.2).

8.2 Convergence Of The Finite Approximations To The Infinite Vector

It will now be shown that the solution vector to system (2.1) , denoted by

-921-
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pY ={p, 1<k < n}, converges at rate n~° component-wise to the infinite
vector p = {pk , k >1} where pp = ¢, (z) .

Theorem

b = pa] = 0(%)
n

Proof: Define 15", 68 and 7 as follows:

v = 2 /,thJ where 0 < k < n-1
J=1

)
58 = m, — U = by “fpj where 0 < k S n—1 ) (8-4)
J=n+l - ’

) = pp — p

Observe that {14, 1 <k < n}is the solution to (2.2) where {m, ,1 <k < n)
has been replaced by {6, 1 < k < n}. In particular

UM = )y 6}-)%_]_(”““2’ et Bken Ba) [ I (uj — 1) (8.5)
1€/<n 1<5<n
Jek
For1<;j<n
Ig""j((”l’p'-” B R T ST I‘u))l < .“kn-j—k

+ Also equations (3.2), (3.6) and (3.7) together imply that |c, | = O(-—l-) . thus (8.4)
n '

and (3.6) imply

67 < Cn?

o)

n —k
| Gne (bt ey ) e, D)o < E e

S S en ¥ = ppheig L
j=1 n-

Thus

n up !
|Z gn—j((l‘hl‘z» T ey By p,,))é}"l = O( )
j=1 n-
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Finally, the denominator of (8.5) may be written as
.
" -
3 T (e = ) = e
W 1<j<n
. ”
h
where
)
uj
} dM =TI T Y | (1—-—
e 1< <k~1 k41<j<n M
i1,
Now equation (3.6) and the Weierstrass Product Convergence test jointly imply
'i;. that
iy
e )
i lim d{® = d >0
_,;,:. n =00
N )
N Now it follows that n® = O(—5) as claimed.
n?
\‘
QN
R
A
" 8.3 A Conjecture
A It is interesting to note that zr) is linearly proportional to the
K Pk
" eigenfunction &,(r). and therefore Ap,(z) = a;p(z). This suggests that p(z)
:: will approximately satisfy this relation. Observe that Am(r) = —m;_(r).
g Thus
» Ap(z) = ) =M Gn—ji(Brbe, ** Baet s Brsn / IT (/‘j — 1)
4 1<j<n-1 1<j<n
:l.: J%&
o
Ky Comparing this with (2.3) suggests that
|4
) gn-—j-l((l‘w‘c- U Mgy Bker T H)) 1
L l N = r_‘y’.: = @ —
: n—x gn-—j((“xv“cv‘ T ey Hgar T Ha)) My
Lo
u
) 8.4 Proposition
™ For1 <z <2
X
l.' )
::: [log(z) = z + 1| = (x=1)%g(z)/2 . where Jg(z)] <1
i"
A
W Proof: The mean value theorem applied to log(z) at z=1 gives:
. log(z) = log(1+z—1) =log(1) + (z=1) = (z~1)*/2(1+c(z—1)7?)
i)
t:: where 0 < @ < 1. The prop now follows from z >1and a>0.
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